

Bestimmung von Wasser in Hydrauliköl

Beschreibung

Beim Betrieb von Hydraulik-Systemen kann durch Undichtigkeiten Feuchtigkeit ins Hydrauliköl gelangen. Diese Feuchtigkeit kann zu Korrosion im Hydrauliksystem führen, aber auch die Schmierwirkung wird beeinträchtigt. Zur Beurteilung des Zustandes ist es deshalb wichtig, den Wassergehalt zu kennen. Dies kann mittels Karl-Fischer-Titration erfolgen.

Eine direkte Titration ist jedoch meist nicht möglich - viele Hydrauliköle enthalten Additive, die zu Nebenreaktionen führen. Hier bleibt nur die indirekte Titration mittels Headspace – Ofen TO 7280.

Das untersuchte Hydrauliköl konnte bei 160°C mit Luft als Trägergas titriert werden. Bei empfindlicheren Ölen oder sehr niedrigen Wassergehalten empfiehlt es sich, Stickstoff zu verwenden, um Fehler durch Oxidation des Öls zu vermeiden. Ggf. muss auch die Temperatur etwas angepasst werden. Hierzu kann eine Temperaturrampe aufgenommen werden (s. Applikation 184AN_Temperaturrampe).

Der Gehalt an Wasser wird in % oder, bei sehr niedrigen Wasseranteilen auch in ppm, berechnet.

Geräte

Titrator	TL 7500 KF trace M6 mit Ofen TO 7280
Elektrode	KF 1150 und TZ 1752
Rührer	Magnetrührer TM 235 TO
Vials	TZ 3988
Laborgeräte	Titrierzelle TZ 1754
	Magnetrührstab 30 mm

Reagenzien

1	Reagenz (Anolyt), für Ofenbetrieb geeignet, z.B. Hydranal Coulomat AG-Oven	
2	Molekularsieb, trocken	
3	Methanol, trocken	
4	4 Wasserstandard mit 1 mg/g oder 0,1%	
	Alle Reagenzien sollten mindestens analysenrein sein	

Durchführung der Titration

Reagenzien

Regenz (Anolyt)

Passende Reagenzien sind gebrauchsfertig erhältlich.

Da durch das Trägergas Methanol und andere leicht flüchtige Komponenten aus der Titrierzelle getragen werden, kommt es zu einem Volumenverlust und das Reagenz wird viskoser. Das Reagenz muss dann ersetzt werden, ggf. kann es durch Zugabe von trockenem Methanol aufgefrischt werden.

Der Zustand des Reagenzes sollte regelmäßig durch Titration eines Standards (1mg/g oder 0,1%) überprüft werden.

Molekularsieb

Das Molekularsieb muss regelmäßig, je nach Nutzung alle 1-2 Wochen, ausgetauscht oder regeneriert werden. Zum Regenerieren wird das Molekularsieb 1-2 Stunden bei 250 – 300°C getrocknet.

Vials

Die Vials und die Krimpkappen werden am besten offen, aber vor Staub geschützt, neben der Waage aufbewahrt. So befinden sich Vials und Kappen im Gleichgewicht mit der Luftfeuchtigkeit, was zu stabilen Blindwerten führt.

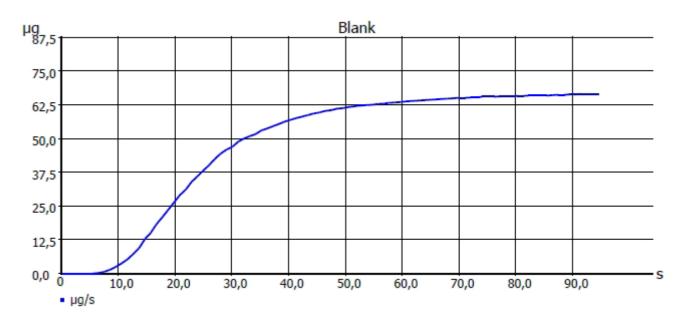
Probenvorbereitung

Die Probe wird in ein Vial eingewogen und das Vial mit einer Krimpkappe verschlossen.

Gleichzeitig werden die Vials für die Blindwertbestimmung verschlossen.

Die Probenmenge wird so gewählt, dass ca. 2 - 5 mg Wasser in der Probe sind. Größere Wassermengen führen zu unnötig langen Messzeiten. Das max. Volumen sollte ca. 4 mL nicht überschreiten.

Erwarteter Wassergehalt	Probenmenge [g]
1 – 10 ppm	5 – 10*
10 – 100 ppm	2 – 5*
0.01 – 0.1 %	0.5 – 2
0.1 – 1 %	0.1 – 0.5
1 – 5 %	0.05 – 0.1
5 – 15 %	< 0.05**


^{*} oder max. 4 ml!

xylem | Titration 183 AN 2

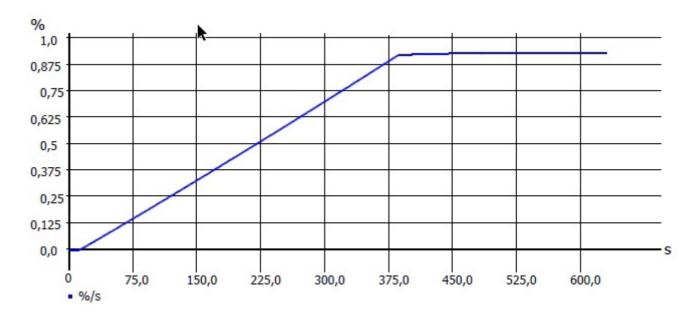
^{**} für Probenmengen <50mg sollte eine 5-stellige Waage verwendet werden.

Titrationsparameter

Blindwert

Default method	With Headspace Blank
Start drift	15.0 μg/min
Interval	20 s
Stability:	0.3 µg/min
Stop drift (delta):	5.0 μg/min
Stop drift tolerance:	0.02 μg/min²
Stirrer control	free
Min. titration time:	90 s
Max. titration time:	600 s
Working point:	300 mV
Control factor	4
Oven	
Temperature	160°C
Temperature Delta	0,5°C
Fan automatic	On
Gas source	Gas
Gas flow (set manually at	100 – 150ml/min
Flowmeter)	

Berechnung:


Blindwert
$$[\mu g] = \mu g \rightarrow M01$$

μg Vor	m Titrator gefundene Wassermenge in μg
--------	--

Die Blindwertbestimmung sollte als 3-fach-Bestimmung durchgeführt werden. Der Mittelwert wird in einem globalen Speicher (z.B. M01) gespeichert.

xylem | Titration 183 AN 3

Probentitration

Default method	With Headspace %
Start drift	15.0 μg/min
Interval	20 s
Stability:	0.3 µg/min
Stop drift (delta):	5.0 µg/min
Stop drift tolerance:	0.02 μg/min²
Stirrer control	free
Min. titration time:	90 s
Max. titration time:	1200 s
Working point:	300 mV
Control factor	4
Oven	
Temperature	160°C
Temperature Delta	0,5°C
Fan automatic	On
Gas source	Gas
Gas flow (set manually at	100 – 150ml/min
Flowmeter)	

xylem | Titration 183 AN 4

Berechnung:

Wassergehalt in %:

$$Water[\%] = \frac{(\mu g - B) * M * F1}{W * F2}$$

μg		Vom Titrator gefundene Wassermenge in μg
В		Blindwert
W		Probenmenge [g]
F1	0,0001	Umrechnungsfaktor 1
F2	1	Umrechnungsfaktor 2

Wassergehalt in ppm:

$$Water[ppm] = \frac{(\mu g - B) * M * F1}{W * F2}$$

μg		Vom Titrator gefundene Wassermenge in μg
В		Blindwert
W		Probenmenge [g]
F1	1	Umrechnungsfaktor 1
F2	1	Umrechnungsfaktor 2

Bei großen Probenmengen und geringen Wassergehalten kann es nötig sein, eine Blindwertkorrektur durchzuführen. Gerade bei Wassergehalten im unteren ppm – Bereich enthält die Luft im Vial oft mehr Wasser als das gleiche Volumen Probe!

Zur Korrektur des Blindwertes wird der Anteil des durch die Probe verdrängten Volumens im Vial aus dem Blindwert herausgerechnet:

Korrigierter Blindwert Bkorr:

$$B_{korr}[\mu g] = \left(V - \frac{W}{\rho}\right) * \frac{B}{V}$$

V	7,8	Gesamtvolumen des Vials [ml]
В		Blindwert [µg]
ρ		Dichte der Probe [g/ml]
W		Probenmenge [g]

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 Techlnfo.xags@xylem.com xylemanalytics.com

